首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   1篇
  国内免费   6篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   14篇
  2012年   3篇
  2011年   10篇
  2010年   5篇
  2009年   6篇
  2008年   4篇
  2007年   8篇
  2006年   17篇
  2005年   11篇
  2004年   15篇
  2003年   8篇
  2002年   13篇
  2001年   6篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有196条查询结果,搜索用时 156 毫秒
1.
A hexaploid wheat landrace collected from the Baluchistan province of Pakistan was found to possess a novel high-molecular-weight glutenin subunit (HMW-GS). The subunit has a very slow electrophoretic mobility as revealed by SDS-PAGE, and its molecular weight is comparable to that of the highest molecular weight glutenin subunit (2.2 encoded in the D-genome) reported so far in hexaploid wheat varieties and landraces of Japanese origin. Evidence obtained from (PCR) gene amplification studies using the primers specific for Glu-1 loci proved that the gene coding for this novel subunit belongs to the Glu-A1 locus located on the long arm of chromosome 1A. Digestion of the amplified gene (PCR product) with restriction enzymes indicated that the novel gene differs from prevailing Glu-A1 alleles (null, 1 and 2*) by an extra DNA fragment of approximately 600 base pairs. The results also indicated that the novel subunit is most probably a derivative of subunit 2* that has very likely incorporated the 600-bp fragment following a process of unequal crossing over. The present findings were further substantiated by reserved phase high performance liquid chromatography (RP-HPLC) analysis.  相似文献   
2.
The storage proteins of 64 F2-derived F6 recombinant inbred lines (RILs) from the bread wheat cross Prinqual/Marengo were analyzed. Parents differed at four loci: Gli-B1 (coding for gliadins), Glu-B1 (coding for HMW glutenin subunits), Glu-A3/Gli-A1 (coding for LMW glutenin subunits/gliadins) and Glu-D3 (coding for LMW glutenin subunits). The effect of allelic variation at these loci on tenacity, extensibility and dough strength as measured by the Chopin alveograph was determined. Allelic differences at the Glu-B1 locus had a significant effect on only tenacity. None of the allelic differences at either the Glu-A3/Gli-A1 or Glu-D3 loci had a significant effect on quality criteria. Allelic variation at the Gli-B1 locus significantly affected all of the dough properties. Epistatic effects between some of the loci considered contributed significantly to the variation in dough quality. Additive and epistatic effects each accounted for 15% of the variation in tenacity. Epistasis accounted for 15% of the variation in extensibility, whereas additive effects accounted for 4%. Epistasis accounted for 14% of the variation in dough strength, and additivity for 9%. The relative importance of epistatic effects suggest that they should be included in predictive models when breeding for breadmaking quality.  相似文献   
3.
Cartilage type IX collagen is cross-linked by hydroxypyridinium residues   总被引:4,自引:0,他引:4  
Type IX collagen, a recently discovered, unusual protein of cartilage, has a segmented triple-helical structure containing interchain disulfides. Its polymeric form and function are unknown. When prepared by pepsin from bovine articular cartilage, type IX collagen was found to contain a high concentration of hydroxypyridinium cross-links, similar to that in type II collagen. Fluorescence spectroscopy located the hydroxylysyl pyridinoline and lysyl pyridinoline cross-linking residues exclusively in the high-molecular-weight collagen fraction, from which they were recovered predominantly in a single CNBr-derived peptide. The results point to a structural role for type IX collagen in cartilage matrix, possibly as an adhesion material to type II collagen fibrils.  相似文献   
4.
5.
Summary Homologous high molecular weight storage prolamins were purified from grain of wheat, rye and barley using combinations of gel filtration, ion-exchange chromatography and preparative isoelectric focusing. Sodium dodecylsulphate polyacrylamide gel electrophoresis showed that the components were single bands with apparent mol.wts. of above 100,000. Molecular weights determined by sedimentation equilibrium ultracentrifugation were considerably lower; 54,700, 67,600 and 69,600 for the components from barley, rye and wheat respectively. Amino acid analysis showed the presence of 13.6 to 16.5 mol% glycine, 29.6 to 34.0 mol% glutamate + glutamine, 11.4 to 13.7 mol% proline and a total of 4.0 to 5.7 mol% basic amino acids. Automated N-terminal amino acid sequencing of the component from wheat showed the presence of cysteine residues at positions 5 and 10, and this is discussed in relation to the possible role of these proteins in the visco-elastic gluten network.  相似文献   
6.
Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight (LMW) independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously synthesized leading strands after synthesis, producing the observed LMW intermediates. Here, we show that, in an Escherichia coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the LMW replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli.  相似文献   
7.
High molecular weight glutenin subunits (HMW-GS) are of a particular interest because of their biomechanical properties, which are important in many food systems such as breadmaking. Using fold-recognition techniques, we identified a fold compatible with the N-terminal domain of HMW-GS Dy10. This fold corresponds to the one adopted by proteins belonging to the cereal inhibitor family. Starting from three known protein structures of this family as templates, we built three models for the N-terminal domain of HMW-GS Dy10. We analyzed these models, and we propose a number of hypotheses regarding the N-terminal domain properties that can be tested experimentally. In particular, we discuss two possible ways of interaction between the N-terminal domains of the y-type HMW glutenin subunits. The first way consists in the creation of interchain disulfide bridges. According to our models, we propose two plausible scenarios: (1) the existence of an intrachain disulfide bridge between cysteines 22 and 44, leaving the three other cysteines free of engaging in intermolecular bonds; and (2) the creation of two intrachain disulfide bridges (involving cysteines 22-44 and cysteines 10-55), leaving a single cysteine (45) for creating an intermolecular disulfide bridge. We discuss these scenarios in relation to contradictory experimental results. The second way, although less likely, is nevertheless worth considering. There might exist a possibility for the N-terminal domain of Dy10, Nt-Dy10, to create oligomers, because homologous cereal inhibitor proteins are known to exist as monomers, homodimers, and heterooligomers. We also discuss, in relation to the function of the cereal inhibitor proteins, the possibility that this N-terminal domain has retained similar inhibitory functions.  相似文献   
8.
Identification of new low-molecular-weight glutenin subunit genes in wheat   总被引:22,自引:0,他引:22  
To clarify the composition of low-molecular-weight glutenin subunits (LMW-GSs) in a soft wheat cultivar, we cloned and characterized LMW-GS genes from a cDNA library and genomic DNA in Norin 61. Based on alignment of the conserved N- and C- terminal domains of the deduced amino-acid sequences, these genes are classified into 12 groups. One of these groups (group 5), the corresponding gene of which has not been reported previously, contains two additional hydrophobic amino-acid clusters interrupting the N-terminal repetitive domain. Other groups (groups 11 and 12), which were not identified in other cultivars as a protein product, showed all eight cysteines in the C-terminal conserved domain. With specific primer sets for these groups it was revealed that Glu-D3 and Glu-A3 encoded the former and the latter, respectively. Both groups of genes were expressed in immature seeds. The presence of these groups of LMW-GSs may affect the dough strength of soft wheat. Received: 26 March 2001 / Accepted: 16 July 2001  相似文献   
9.
 The high-molecular-weight glutenin (HMW) genes and encoded subunits are known to be critical for wheat quality characteristics and are among the best-studied cereal research subjects. Two lines of experiments were undertaken to further understand the structure and high expression levels of the HMW-glutenin gene promoters. Cross hybridizations of clones of the paralogous x-type and y-type HMW-glutenin genes to a complete set of six genes from a single cultivar showed that each type hybridizes best within that type. The extent of hybridization was relatively restricted to the coding and immediate flanking DNA sequences. Additional DNA sequences were determined for four published members of the HMW-glutenin gene family (encoding subunits Ax2*, Bx7, Dx5, and Dy10) and showed that the flanking DNA of the examined genes diverge at approximately −1200 bp 5′ to the start codon and 200–400 bp 3′ to the stop codon. These divergence sites may indicate the boundaries of sequences important in gene expression. In addition, promoter sequences were determined for alleles of the Bx gene (Glu-B1-1), a gene reported to show higher levels of expression than other HMW-glutenin genes and with variation among cultivars. The sequences of Bx promoters from three cultivars and one wild tetraploid wheat indicated that all Bx alleles had few differences and contained a duplicated portion of the promoter sequence “cereal-box” previously suspected as a factor in higher levels of expression. Thus, the “cereal-box” duplication preceeded the origin of hexaploid wheat, and provides no evidence to explain the variations in Bx subunit synthesis levels. One active Bx allele contained a 185-bp insertion that evidently resulted from a transposition event. Received: 5 August 1997 / Accepted: 6 November 1997  相似文献   
10.
Bacterial tyrosine-kinases have been demonstrated to participate in the regulation of capsule polysaccharides (CPS) and exopolysaccharides (EPS) production and export. However, discrepant data have been reported on the molecular mechanism responsible for this regulation depending on the bacterial species analyzed. Special attention was previously paid to the tyrosine-kinase Wzcca of Escherichia coli K-12, which is involved in the production of the exopolysaccharide, colanic acid, and autophosphorylates by using a cooperative two-step process. In this work, we took advantage of these observations to investigate in further detail the effect of Wzcca phosphorylation on the colanic acid production. First, it is shown that expression of the phosphorylated form of Wzc prevents production of colanic acid whereas expression of the non-phosphorylated form allows biosynthesis of this exopolysaccharide. However, we provide evidence that, in the latter case, the size distribution of the colanic acid polymer is less scattered than in the case of the wild-type strain expressing both phosphorylated and non-phosphorylated forms of Wzc. It is then demonstrated that colanic acid production is not merely regulated by an on/off mechanism and that, instead, both phosphorylated and non-phosphorylated forms of Wzc are required to promote colanic acid synthesis. Moreover, a series of data suggests that besides the involvement of phosphorylated and non-phosphorylated forms of Wzc in the production of colanic acid, two particular regions of this kinase play as such an important role in the synthesis of this exopolysaccharide: a proline-rich domain located in the N-terminal part of Wzcca, and a tyrosine cluster present in the C-terminal portion of the enzyme. Furthermore, considering that polysaccharides are known to facilitate bacterial resistance to certain environmental stresses, it is shown that the resistance of E. coli to desiccation is directly connected with the phosphorylation state of Wzcca.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号